染料敏化太陽能電池材料之研究

申請人近年來利用陽極氧化法,以 H₃PO₄/NH₄F或有機溶劑/NH₄F 等為電解液,合成陣列式二氧化鈦奈米管。採用商業化的金屬鈦箔置 入於二極式電解槽中為陽極,白金片為陰極,改變不同參數,如電壓、 陽極氧化時間、攪拌速率、pH值和煆燒溫度等,製備出陣列式二氧 化鈦奈米管。結果顯示:操作電壓和 pH值為影響生成二氧化鈦奈米 管之二最重要因素。在 500 ℃煆燒下具有最強的銳鈦礦結晶相 (20=25.6°(101)),此晶相合成之陣列式二氧化鈦奈米管由 SEM 與 XRD分析發現,奈米管長有利於染料電子的轉移。

使用實驗統計分析技術,實驗經由 Box-Behnken Design,尋找出製備陣列式二氧化鈦奈米管之最佳條件,包括探討陽極氧化反應時間、施加電壓及電解液,NH4F濃度等參數對陣列式二氧化鈦奈米管品質之影響。經由 Design Expert 軟體分析所得最適化條件:陽極氧化時間為 300 min、施加電壓為 15 V 及電解液 NH4F 濃為 0.5 M,其預測內管徑為 33 nm,管長為 1.43 μm。經確認實驗結果,其內管徑為 36 nm,管長為 1.42 μm。另以定電壓 40 V 下於有機系電解液反應 12 小時,成功製備出陣列式二氧化鈦奈米管,其內管徑約為 85 nm,管長為 15.69 μm。其光電轉換效率可達 3.24 %。另以背照光方式激發染料,由光電轉換效率曲線研究發現,以旋轉塗布法(spin coating)所

製備之對應電極,最適於背照光 DSSCs 系統之使用。

製得之陣列式二氧化鈦奈米管,再經以四丁基氧鈦(TnB)為前導物,製成複合奈米粒子或在不同時間以 O2電漿做表面處理,DSSC 光電轉化效率為 3.68%。此乃因 TnB 表面處理後,表面生長出 TiO2 奈米粒子,可以提高染料的吸附量,同時結合氧氣電漿技術後可以提高親水性能以增加染料的吸附量。圖 1 為陣列式 TiO2 奈米管的 I-V 特性曲線。結果顯示,結合製得 TiO2 奈米粒子和電漿處裡的陣列式二氧化鈦奈米管,具最高之光電轉換效率。

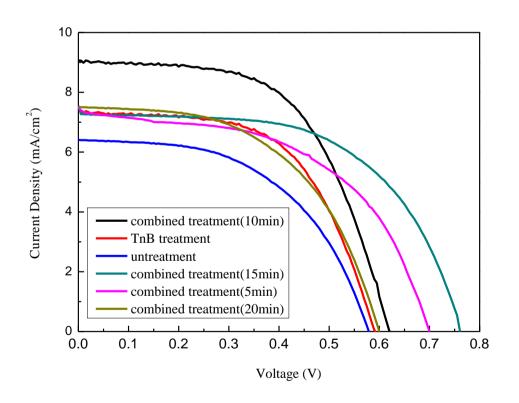


圖 1 陣列式 TiO2 奈米管的 I-V 特性曲線

使用乙二醇等有機電解液,以陽極氧化法合成陣列式二氧化鈦奈 米管,以得到不同形態之新型陣列式二氧化鈦奈米管。將製得不同形態,不同長度等陣列式二氧化鈦奈米管作為工作電極,白金為對應電極,製作染料敏化太陽能電池。於乙二醇有機電解液中,根據反應時間,氧化電壓,含水量,F濃度等製程條件下,可得到性質優異陣列式 TiO_2 奈米管: $40 \, V$ 電壓, $0.3 \, wt\% \, NH_4F$, $2 \, vol\% \, H_2O$ 乙二醇電解液,反應 $12 \, h$, $500 \, ^{\circ}$ C 煅燒 $2 \, h$, $10 \, ^{\circ}$ C/min 升溫速率。製備得陣列式 TiO_2 奈米管的 SEM 分析,如圖 $2 \, m$ 所示。從圖得奈米管管長約 $15.69 \, m$ 所,管內徑為 $85 \, nm$,管壁約為 $10 \, nm$,且可看出孔洞高度均匀緊凑排列。放大的截面可知管壁是垂直而且光滑的,並非似甲醯胺體系的 价節狀,這可能與反應條件的均勻性有關。從(d)中可以看到管的底 部是封閉的,且排布緊密。

在染料敏化太陽能電池中,做為光陽極的 TiO₂,因禁帶寬度較寬,故無法有效吸收大部分太陽光能量,陽光無法被充分利用,且 TiO₂ 導帶中的電子與電洞容易復合,此等缺失阻礙了陣列式 TiO₂ 奈米管於實際應用之發展。如何藉由對陣列式 TiO₂ 奈米管進行改質處理,可有效的解決上述瓶頸,為提升 DSSCs 的光電效率之重要方法。

改質處理常用之方法多為摻雜或複合等技術之應用。選擇適合的 摻雜或複合等技術,為有效提升改質後 DSSCs 光電效率之關鍵技術。 申請人之研究團隊應用改質技術提升陣列式 TiO₂ 奈米管於 DSSCs 中之光電轉換效率,如以電析出法製備半導體複合材料,和以稀土氧化物修飾陣列式 TiO₂ 奈米管,以提升 DSSCs 之光電轉換效率。

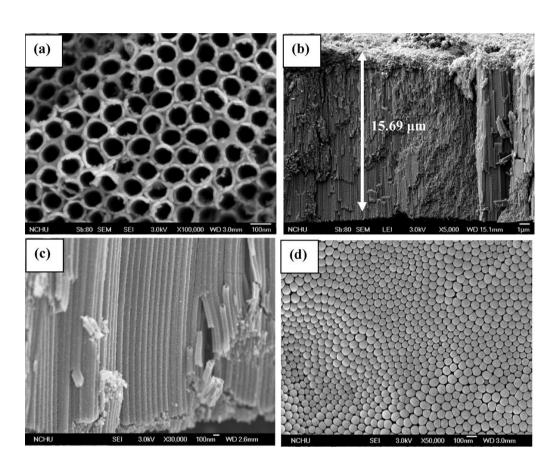


圖2 乙二醇電解液中生長TiO₂奈米管的SEM分析。(a)表面;(b)截面; (c)放大的截面;和(d)底面。

圖 3 為 TiO₂ 奈米管及水熱法製備 ZnO/TiO₂ 奈米管的 XRD 分析。 圖中 25.28°和 48.04°為 TiO₂銳鈦礦相的(101)和(200)特徵峰,其他為 Ti 基底特徵峰。當沉積時間為 15 min 時,ZnO 的特徵峰並沒有明顯 出現,這可能與 ZnO 的含量有關,但仍出現 TiO₂ 奈米管的銳鈦礦相 峰。根據 ZnO 的標準譜圖,當沉積時間為 30 min 後,ZnO/TiO₂複合 物不僅有 TiO₂ 的銳鈦礦晶形,而且出現新的 31.9°, 34.5°, 36.3°和 56.6° 繞射峰,這些歸屬於 ZnO 的六角形晶體結構。ZnO 的特徵峰隨著沉 積時間的增加而增強,當沉積時間達到 2 h 時,銳鈦礦相(101)峰強降 低,說明 ZnO 量過多覆蓋了 TiO₂表面,而影響了 TiO₂銳鈦礦相的觀 察。這些發現顯示了 ZnO/TiO₂複合物具有 TiO₂奈米管的銳鈦礦相和 ZnO 的六角形纖維鋅礦晶形。此 ZnO/TiO₂複合光電極,可提升染料 敏化太陽電池之光電轉換效率一倍以上。

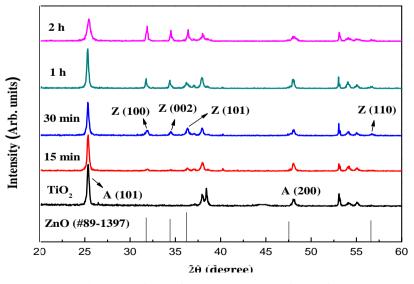


圖 3 為 TiO₂ 奈米管及 ZnO/TiO₂ 奈米管的 XRD 分析

研究室於向下轉換技術提升 DSSCs 之光電效率之研究已有初步之結果。應用陽極氧化技術於 Ti 基片上生長陣列式 TiO_2 奈米管,並以水熱技術於奈米管陣列上生長氧化釤 (Sm_2O_3) 。結果顯示, Sm_2O_3 修飾之陣列式 TiO_2 奈米管,可以增加染料敏化型太陽能電池之短路電流和光電轉換效率。

圖 4為 $0.02 \text{ M Sm}_2\text{O}_3/\text{TiO}_2$ 奈米管的激發光譜和發射光譜。圖 4(A)顯示在紫外光區之 371.9 nm 光譜,與吸收光譜(約 372.1 nm)相當,此表示由 TiO_2 能量轉移至 Sm^{3+} 。而在 421.2 nm 的較弱能帶,則歸因於 Sm^{3+} 的直接激發。在圖 4(B)中,在 587 nm,613 nm 和 664 nm 的發射能帶為 Sm^{3+} 之 $^4\text{G}_{5/2}$ - $^6\text{H}_{5/2}$, $^4\text{G}_{5/2}$ - $^6\text{H}_{7/2}$ 和 $^4\text{G}_{5/2}$ - $^6\text{H}_{9/2}$ 等電子躍遷,此等均發生於 N719 染料的光譜吸收範圍。因此,可以藉由下轉換技術,使 Sm^{3+} 吸收太陽光的紫外線,轉變為可被 N719 染料吸收之光譜,以提高染料敏化太陽能電池的能量捕獲能力。

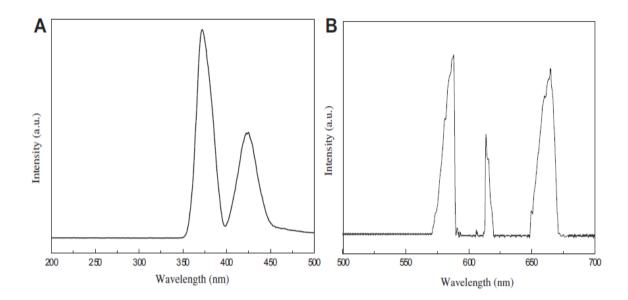


Fig. 4 (A) Excitation spectra of 0.02 M S m_2O_3/TiO_2 nanotubes ($\lambda_{em}=613$ nm) and (B) emission spectra of 0.02 M S m_2O_3/TiO_2 nanotubes ($\lambda_{ex}=370$ nm).

當添加 0.02 M 氧化釤,與裸露的 TiO_2 奈米管相比,光電效率提高了 73.1%(3.22/1.86=1.731),

Table 1 Photovoltaic performance of DSSCs under AM-1.5

Photoanode	V _{oc}	J_{sc}	FF	η (%)	Dye
	(V)	(mA		77 (%)	Dye loading
		cm ⁻²)			(mol cm^{-2})
TiO ₂ nonotubes	0.58	5.64	0.570	1.86	6.58×10^{-8}
$0.01 \text{ M Sm}_2\text{O}_3/\text{TiO}_2$	0.600	7.00	0.617	2.59	7.36×10^{-8}
nanotubes					
$0.02 \text{ M Sm}_2\text{O}_3/\text{TiO}_2$	0.600	8.67	0.619	3.22	7.73×10^{-8}
nanotubes					
$0.03 \text{ M Sm}_2\text{O}_3/\text{TiO}_2$	0.605	6.90	0.615	2.57	7.70×10^{-8}
nanotubes					
$0.05 \text{ M Sm}_2\text{O}_3/\text{TiO}_2$	0.610	6.33	0.585	2.26	7.29×10^{-8}
nanotubes					
$0.05~\mathrm{M}~\mathrm{S}\mathrm{m}_2\mathrm{O}_3/\mathrm{Ti}\mathrm{O}_2$	0.610	6.33	0.585	2.26	7.29x10 ⁻⁸

染料敏化太陽能電池(Dye-sensitized solar cells, DSSCs)材料之研究,為研究室近年之學術研究重點,每年均有一名博士生和兩名碩士生進行相關之研究。相關的研究成果也陸續整理與發表。研究成果發表於 Journal of Power Sources, Thin Solid Films 和 Current Applied Physics 等 SCI 國際期刊。