吳 茂 松 (Mao-Sung Wu, Ph. D)

現職:

國立高雄應用科技大學 化學工程與材料工程系 教授

學歷:

國立清華大學 化學工程系 博士 (2000.06)

經歷:

國立高雄應用科技大學 化學工程與材料工程系 教授 (2012.08~)

國立高雄應用科技大學 化學工程與材料工程系 系主任(2011.08~2013.07)

國立高雄應用科技大學 化學工程與材料工程系 副教授 (2009.02~2012.07)

國立高雄應用科技大學 化學工程與材料工程系 助理教授 (2005.08~2009.01)

工業技術研究院 工業材料研究所 研究員/經理 (2000.08~2005.07)

 

聯絡方式:

辦公室:化材系7706

實驗室:化材系8800810

Tel: 07-3814526 ext. 5113

E-mail: mswu@kuas.edu.tw

 

專長:

電化學工程/能源材料與系統

 

目前的研究方向:

1. 電化學儲能與能源轉換元件:鋰離子電池/染料敏化型太陽能電池/超高電容器

2. 奈米結構材料合成及應用:儲氫/電致色變/電化學感測器

3. 碳材料開發:石墨烯(graphene)片/緞帶、膨脹石墨球/管、高比表面積之有機-金屬骨架(MOF)碳材料

4.  電化學沉積與防蝕技術

 

 

Numerical Simulation of Electrochemical Deposition -Velocity Distribution

  

Numerical Simulation of Electrochemical Deposition -Current Distribution

 

 

現有電化學相關軟硬體設備:

1. 太陽能電池

    ·模擬光源系統(系上公用設備)

    · I-V曲線量測系統 軟體(Keithley 2400系列)

2. 鋰電池

    ·鋰電池(鈕釦型)組裝系統(含手套箱等)

    ·多通道電性測試系統(Scribner-580)

3. 超高電容器

    ·恆電位儀(CH Instruments, AutoLab)

    ·循環伏安及循環充放電檢測系統軟硬體(Keithley 2400系列)

4. 電致色變

    ·即時電位/電流與光學穿透率量測系統軟硬體

5. 電化學量測系統

    ·恆電位儀(CH Instruments, AutoLab)-循環伏安及交流阻抗分析

   ·脈衝、循環伏安、定電壓、定電流、線性掃瞄...等軟硬體(Keithley 2400系列)

 

會員:

美國電化學 協會(Electrochemical Society Active Member)

國際電化學協會(International Society of Electrochemistry)

 

研究成果(國際期刊論文發表)

*Corresponding author

  1. M. S. Wu*, C. Y. Jao, F. Y. Chuang, and F. Y. Chen, 2017: Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis, Electrochimica Acta, in press.

  2. M. S. Wu*, W. A. Chen, F. Y. Chen, and F. Y. Chuang, 2017: Nickel cobaltite nanoflakes grown around nickel foam-supported expanded mesocarbon microbeads for battery-like electrochemical capacitors, Journal of Alloys and Compounds, 695, 410-417.

  3. M. S. Wu*, C. Wang, and J. J. Jow, 2016: Self-assembly of one-dimensional nitrogen-doped hollow carbon nanoparticle chains derived from zinc hexacyanoferrate coordination polymer for lithium-ion capacitors, Electrochimica Acta, 222, 856-861.

  4. M. S. Wu*, C. Y. Chen, Y. R. Chen, and H. C. Shih, 2016: Synthesis of bimodal mesoporous carbon with embedded nickel nanoparticles through pyrolysis of nickel-organic framework as a counter-electrode catalyst for dye-sensitized solar cells, Electrochimica Acta, 215, 50-56.

  5. M. S. Wu*, Z. Z. Ceng, C. Y. Chen, and C. Wang, 2016: Nickel-iron alloy nanoparticle encapsulated in mesoporous nitrogen-doped carbon nanosphere as a counter electrode material for dye-sensitized solar cells, Journal of Alloys and Compounds, 688, 342-349.

  6. M. S. Wu* and Z. Z. Ceng, 2016: Bamboo-like nitrogen-doped carbon nanotubes formed by direct pyrolysis of Prussian blue analogue as a counter electrode material for dye-sensitized solar cells, Electrochimica Acta, 191, 895-901.

  7. Z. B. Zheng, D. S. Chan, and M. S. Wu*, 2016: Highly porous nickel cobaltite film composed of nanosheets with attached nanowires as an electrode material for electrochemical capacitors, Materials Letters, 169, 46-49.

  8. M. S. Wu*, Z. Z. Ceng, and C. Y. Chen, 2016: Surface modification of porous TiO2 electrode through pulse oxidative hydrolysis of TiCl3 as an efficient light harvesting photoanode for dye-sensitized solar cells, Electrochimica Acta, 191, 256-262.

  9. M. S. Wu*, Z. B. Zheng, Y. S. Lai, and J. J. Jow, 2015: Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application, Electrochimica Acta, 182, 31-38.

  10. M. S. Wu*, L. J. Lyu, and J. H. Syu, 2015: Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors, Journal of Power Sources, 297, 75-82.

  11. M. S. Wu*, C. Y. Tsai, and Y. S. Lai, 2015: Porous hexagonal cobalt oxyhydroxide sheets with attached nickel hydroxide nanoparticles as electrode materials for electrochemical supercapacitors, RSC Advances, 5, 15674-15681.

  12. M. S. Wu*, C. J. Chung, and Z. Z. Ceng, 2015: Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells, RSC Advances, 5, 4561-4567.

  13. M. D. Fang, J. J. Jow*, Y. H. Yeh, H. R. Chen, M. S. Wu, C. W. Kuo, T. R. Ling, and T. H. Ho, 2015: Improving the sintering behavior of mesocarbon-microbeads for the manufacture of high quality carbon products using a joint promoter comprising carbon black and glycidyl methacrylate, Materials Chemistry and Physics, 149-150, 400-404.

  14. M. S. Wu* and W. H. Shu, 2015: Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors, Journal of Power Sources, 274, 1055-1062.  

  15. M. S. Wu*, R. Y. Ji, and Y. R. Zheng, 2014: Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea, Electrochimica Acta, 144, 194-199.

  16. M. S. Wu*, G. W. Lin, and R. S. Yang, 2014: Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium, Journal of Power Sources, 272, 711-718.

  17. M. S. Wu*, Y. R. Zheng, and G. W. Lin, 2014: Three-dimensional carbon nanotube networks with a supported nickel oxide nanonet for high-performance supercapacitors, Chemical Communications, 50, 8246-8248.

  18. M. S. Wu* and Y. H. Fu, 2014: Electrophoretic self-assembly of expanded mesocarbon microbeads with attached nickel nanoparticles as a high-rate electrode for supercapacitors, Nanoscale, 6, 4195-4203. 

  19. M. S. Wu* and J. F. Wu, 2013: Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells, Chemical Communications, 49, 10971-10973.   

  20. M. S. Wu* and Y. H. Fu, 2013: Tubular graphene nanoribbons with attached manganese oxide nanoparticles for use as electrodes in high-performance supercapacitors, Carbon, 60, 236-245. 

  21. M. S. Wu* and J. F. Wu, 2013: Nickel hydroxide electrode with porous nanotube arrays prepared by hydrolysis and cathodic deposition for high-performance supercapacitors, Journal of Power Sources, 240, 397-403. 

  22. M. S. Wu* and H. W. Chang, 2013: Self-assembly of NiO-coated ZnO nanorod electrodes with core-shell nanostructures as anode materials for rechargeable lithium-ion batteries, Journal of Physical Chemistry C, 117, 2590-2599. 

  23. R. Y. Ji, D. S. Chan, J. J. Jow, and M. S. Wu*, 2013: Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis, Electrochemistry Communications, 29, 21-24.

  24. M. S. Wu* and Y. J. Zheng, 2013: Electrophoresis of randomly and vertically embedded graphene nanosheets in activated carbon film as a counter electrode for dye-sensitized solar cells, Physical Chemistry Chemical Physics, 15, 1782-1787.  

  25. M. S. Wu*, C. J. Lin, and C. L. Ho, 2012: Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors, Electrochimica Acta, 81, 44-48. 

  26. M. S. Wu*, Y. P. Lin, C. H. Lin, and J. T. Lee, 2012: Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors, Journal of Materials Chemistry, 22, 2442-2448. 

  27. M. S. Wu*, C. H. Tsai, and T. C. Wei, 2012: Anodic deposition of ultrathin TiO2 film with blocking layer and anchoring layer for dye-sensitized solar cells, Journal of The Electrochemical Society, 159, B80-B85. 

  28. M. D. Fang, W. L. Tseng, J. J. Jow*, C. M. Lee, H. R. Chen, M. S. Wu, and T. R. Ling, 2012: Improving the self-sintering of mesocarbon-microbeads for the manufacture of high performance graphite-parts, Carbon, 50, 906-913.

  29. M. S. Wu* and Y. J. Zheng, 2012: Electrophoretic deposition of poly(n-vinyl-2-pyrrolidone)-capped platinum nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells, International Journal of Electrochemical Science, 7, 1187-1195.

  30. C. L. Ho and M. S. Wu*, 2011: Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors, Journal of Physical Chemistry C, 115, 22068-22074.

  31. M. S. Wu* and K. C. Huang, 2011: Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chemical Communications, 47, 12122-12124. 

  32. M. S. Wu* and K. C. Huang, 2011: Enhanced electrochemical performance of nickel hydroxide electrode with monolayer hollow spheres composed of nanoflakes, International Journal of Hydrogen Energy, 36, 13407-13413.

  33. M. S. Wu*, D. S. Chan, K. H. Lin, and J. J. Jow, 2011: A simple route to electrophoretic deposition of transition metal-coated nickel oxide films for electrochemical capacitors, Materials Chemistry and Physics, 130, 1239-1245. 

  34. M. S. Wu*, C. H. Tsai, J. J. Jow, and T. C. Wei, 2011: Enhanced performance of dye-sensitized solar cell via surface modification of mesoporous TiO2 photoanode with electrodeposited thin TiO2 layer, Electrochimica Acta, 56, 8906-8911.

  35. M. S. Wu*, C. H. Tsai, and T. C. Wei, 2011: Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells, Chemical Communications, 47, 2871-2873.

  36. M. S. Wu* and Y. P. Lin, 2011: Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries, Electrochimica Acta, 56, 2068-2073.

  37. M. S. Wu*, Y. H. Ou, and Y. P. Lin, 2011: Iron oxide nanosheets and nanoparticles synthesized by a facile single-step coprecipitation method for lithium-ion batteries, Journal of The Electrochemical Society, 158, A231-A236.

  38. M. S. Wu*, Z. S. Guo, and J. J. Jow, 2010: Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors, Journal of Physical Chemistry C, 114, 21861-21867.

  39. J. J. Jow*, Z. S. Guo, H. R. Chen, M. S. Wu, and T. R. Ling, 2010: Determination of the iodine adsorption number of carbon black by using a direct cathodic reduction method, Electrochemistry Communications, 12, 1605-1608.

  40. M. S. Wu* and M. J. Wang, 2010: Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors, Chemical Communications, 46, 6968-6970.

  41. M. S. Wu*, H. L. Hsu, H. H. Chiu, and Y. P. Lin, 2010: Fabrication of nickel boride-coated carbon nanotube films by electrophoresis and electroless deposition for electrochemical hydrogen storage, International Journal of Hydrogen Energy, 35, 8993-9001.

  42. C. Zhu, C. Yang, W. D. Yang*, M. S. Wu, H. M. Ysai, C. Y. Hsieh, and H. L. Fang, 2010: Preparation and electrochemical characterization of LiNi0.8Co0.2O2 cathode material by a modified sol-gel method, Journal of Applied Electrochemistry, 40, 1665-1670.

  43. M. S. Wu* and K. H. Lin, 2010: One-step electrophoretic deposition of Ni-decorated activated-carbon film as an electrode material for supercapacitors, Journal of Physical Chemistry C, 114, 6190-6196.

  44. M. S. Wu*, M. J. Wang, and J. J. Jow, 2010: Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors, Journal of Power Sources, 195, 3950-3955.

  45. M. S. Wu*, Y. H. Ou, and Y. P. Lin, 2010: Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries, Electrochimica Acta, 55, 3240-3244.

  46. J. J. Jow*, H. H. Lai, H. R. Chen, C. C. Wang, M. S. Wu, and T. R. Ling, 2010: Effect of hydrothermal treatment on the performance of RuO2-Ta2O5/Ti electrodes for use in supercapacitors, Electrochimica Acta, 55, 2793-2798.

  47. M. S. Wu* and M. J. Wang, 2010: Electrochemical preparation of highly regulated nickel oxide nanoflakes on carbon nanofiber for electrochemical capacitors, Electrochemical and Solid-State Letters, 13, A1-A3.

  48. M. S. Wu* and R. H. Lee, 2009: Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors, Journal of The Electrochemical Society, 156, A737-A743. 

  49. M. S. Wu*, C. Y. Huang, and K. H. Lin, 2009: Facile electrophoretic deposition of Ni-decorated carbon nanotube film for electrochemical capacitors, Electrochemical and Solid-State Letters, 12, A129-A131. (This article has been selected for May 11, 2009 issue of Virtual Journal of Nanoscale Science & Technology.) 

  50. M. S. Wu*, C. Y. Huang, and J. J. Jow, 2009: Electrophoretic deposition of network-like carbon nanofiber as a conducting substrate for nanostructured nickel oxide electrode, Electrochemistry Communications, 11, 779-782.

  51. M. S. Wu*, R. H. Lee, J. J. Jow, W. D. Yang, C. Y. Hsieh, and B. J. Weng, 2009: Nanostructured iron oxide films prepared by electrochemical method for electrochemical capacitors, Electrochemical and Solid-State Letters, 12, A1-A4. (This article has been selected for October 27, 2008 issue of Virtual Journal of Nanoscale Science & Technology.)

  52. M. S. Wu*, C. Y. Huang, and K. H. Lin, 2009: Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors, Journal of Power Sources, 186, 557-564.

  53. J. J. Jow*, S. W. Yang, H. R. Chen, M. S. Wu, T. R. Ling, and T. Y. Wei, 2009: Co-electrodeposition of Pt-Ru electrocatalysts in electrolytes with varying compositions by a double-potential pulse method for the oxidation of MeOH and CO, International Journal of Hydrogen Energy, 34, 665-671.

  54. M. S. Wu*, C. H. Yang, and M. J. Wang, 2008: Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques, Electrochimica Acta, 54, 155-161.

  55. M. S. Wu*, M. Y. Wang, J. J. Jow, W. D. Yang, C. Y. Hsieh, and H. M. Tsai, 2008: Electrochemical fabrication of anatase TiO2 nanostructure as an anode material for aqueous lithium-ion batteries, Journal of Power Sources, 185, 1420-1424.

  56. M. S. Wu*, Y. A. Huang, and C. H. Yang, 2008: Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition, Journal of The Electrochemical Society, 155, A798-A805.  

  57. M. S. Wu*, Y. A. Huang, J. J. Jow, W. D. Yang, C. Y. Hsieh, and H. M. Tsai, 2008: Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances, International Journal of Hydrogen Energy, 33, 2921-2926.

  58. M. S. Wu* and H. H. Hsieh, 2008: Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors, Electrochimica Acta, 53, 3427-3435. Top Cited Article 2008 to 2009 in Electrochimica Acta.

  59. M. S. Wu* and R. H. Lee, 2008: Nanostructured manganese oxide electrodes for lithium-ion storage in aqueous lithium sulfate electrolyte, Journal of Power Sources, 176, 363-368.

  60. M. S. Wu* and C. H. Yang, 2007: Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition, Applied Physics Letters, 91, 033109. 

  61. M. S. Wu*, Y. A. Huang, C. H. Yang, and J. J. Jow, 2007: Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, International Journal of Hydrogen Energy, 32, 4153-4159. 

  62. M. S. Wu* and P. C. Chiang, 2007: High-rate capability of lithium-ion batteries after storing at elevated temperature, Electrochimica Acta, 52, 3719-3725. 

  63. M. S. Wu*, J. T. Lee, P. C. Chiang, and J. C. Lin, 2007: Carbon-nanofiber composite electrodes for thin and flexible lithium-ion batteries, Journal of Materials Science, 42, 259-265.

  64. J. J. Jow*, H. J. Lee, H. R. Chen, M. S. Wu, and T. Y. Wei, 2007: Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochimica Acta, 52, 2625-2633.

  65. J. T. Lee*, M. S. Wu, F. M. Wang, H. W. Liao, C. C. Li, S. M. Chang, and C. R. Yang, 2007: Gel polymer electrolytes prepared by in situ atom transfer radical polymerization at ambient temperature, Electrochemical and Solid-State Letters, 10, A97-A100.

  66. M. S. Wu*, C. Y. Lin, Y. Y. Wang, C. C. Wan, and C. R. Yang, 2006: Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack, Electrochimica Acta, 52, 1349-1357.

  67. M. S. Wu* and P. C. Chiang, 2006: Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries, Electrochemistry Communications, 8, 383-388. 

  68. M. S. Wu*, P. C. Chiang, J. T. Lee, and J. C. Lin, 2005: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. Journal of Physical Chemistry B, 109, 23279-23284.  

  69. M. S. Wu*, 2005: Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition. Applied Physics Letters, 87, 153102-153104. (This article has been selected for the October 17, 2005 issue of Virtual Journal of Nanoscale Science & Technology.)  

  70. C. C. Li*, J. T. Lee, C. Y. Lo, and M. S. Wu, 2005: Effects of PAA-NH4 addition on the dispersion property of aqueous LiCoO2 slurries and the cell performance of as-prepared LiCoO2 cathodes. Electrochemical and Solid-State Letters, 8, A509-A512.

  71. J. T. Lee*, M. S. Wu, F. M. Wang, Y. L. Lin, M. Y. Bai, and P. C. Chiang, 2005: Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. Journal of The Electrochemical Society, 152, A1837-A1843.

  72. M. S. Wu*, P. C. Chiang, and J. C. Lin, 2005: Electrochemical investigations on capacity fading of advanced lithium-ion batteries after storing at elevated temperature. Journal of The Electrochemical Society, 152, A1014-A1016.  

  73. P. C. Chiang, M. S. Wu*, and J. C. Lin, 2005: A novel dual-current formation process for advanced lithium-ion batteries. Electrochemical and Solid-State Letters, 8, A423-A427.

  74. C. L. Cheng, C. C. Wan, Y. Y. Wang*, and M. S. Wu, 2005: Thermal shutdown behavior of PVdF-HFP based polymer electrolytes comprising heat sensitive crosslinkable oligomers. Journal of Power Sources, 144, 238-243.

  75. M. S. Wu*, P. C. Chiang, and J. C. Lin, 2005: Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements. Journal of The Electrochemical Society, 152, A47-A52.

  76. M. S. Wu*, J. T. Lee, Y. Y. Wang, and C. C. Wan, 2004: Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition. Journal of Physical Chemistry B, 108, 16331-16333.

  77. M. S. Wu*, P. C. Chiang, J. C. Lin, and J. T. Lee, 2004: Effects of copper trifluoromethanesulphonate as an additive to propylene carbonate-based electrolyte for lithium-ion batteries. Electrochimica Acta, 49, 4379-4386.

  78. M. S. Wu*, T. L. Liao, Y. Y. Wang, and C. C. Wan, 2004: Assessment of the wettability of porous electrodes for lithium-ion batteries. Journal of Applied Electrochemistry, 34, 797-805.

  79. M. S. Wu*, J. C. Lin, and P. C. Chiang, 2004: A silver hexafluorophosphate additive to propylene carbonate-based electrolytes for lithium-ion batteries. Electrochemical and Solid-State Letters, 7, A206-A208.

  80. M. S. Wu*, H. R. Wu, Y. Y. Wang, and C. C. Wan, 2004: Electrochemical investigation of hydrogen-storage alloy electrode with duplex surface modification. International Journal of Hydrogen Energy, 29, 1263-1269.

  81. M. S. Wu* and P. C. Chiang, 2004: Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors. Electrochemical and Solid-State Letters, 7, A123-A126.

  82. M. S. Wu*, P. C. Chiang, J. C. Lin, and Y. S. Jan, 2004: Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests – short-circuit tests. Electrochimica Acta, 49, 1803-1812.

  83. M. S. Wu*, H. R. Wu, Y. Y. Wang, and C. C. Wan, 2003: Effect of the stoichiometric ratio of aluminum and manganese on electrochemical properties of hydrogen-storage alloys. Journal of Applied Electrochemistry, 33, 619-625.

  84. M. S. Wu*, K. H. Liu, Y. Y. Wang, and C. C. Wan, 2002: Heat dissipation design for lithium-ion batteries. Journal of Power Sources, 109, 160-166.

  85. M. S. Wu, H. R. Wu, Y. Y. Wang*, and C. C. Wan, 2000: Surface treatment for hydrogen storage alloy of nickel/metal hydride batteries. Journal of Alloys and Compounds, 302, 248-257.

  86. M. S. Wu, Y. Y. Wang*, and C. C. Wan, 2000: Pulse activation of hydrogen-storage alloy electrodes in nickel/metal hydride batteries. Journal of The Electrochemical Society, 147, 4065-4070.

  87. M. S. Wu, Y. H. Hung, Y. Y. Wang*, and C. C. Wan, 2000: Heat dissipation behavior of nickel/metal hydride batteries. Journal of The Electrochemical Society, 147, 930-935.

  88. M. S. Wu, C. M. Hung, Y. Y. Wang*, and C. C. Wan, 1999: Effects of surface modification of nickel hydroxide powder on the electrode performance of nickel/metal hydride batteries. Electrochimica Acta, 44, 4007-4016.

  89. M. S. Wu, Y. Y. Wang*, and C. C. Wan, 1998: Thermal behavior of nickel/metal hydride batteries during charge and discharge. Journal of Power Sources, 74, 202-210.