黃銘賢副教授 Huang

+886-7-3814526 ext.5120
mhuang@cc.kuas.edu.tw


植物中有效成分萃取分離技術

Isolation and purification technology

Research Lab: 化工館204

恭喜 薛盛仁先生  游鎮博先生  洪筱鈞小姐 通過碩士口試

 

本研究室研究宗旨

1.簡便的流程步驟

2.低原料成本 + 低設備成本

3.使用無毒溶劑          

以得到 高產率 + 高純度 產品為目標

未來研究方向

 

 洋蔥中萃取槲黃素quercetin

 Separation process of quercetin glucosides from onion (Allium cepa L.)

 

洋蔥中的flavonoid 成分主要以槲黃素quercetin為主,一顆洋蔥200gm約含60-100 mg的槲黃素醣苷。quercetin功效為

A.  抗氧化-抗氧化力是維他命E50倍,維他命C20倍。

B.   抑制惡性細胞生長。

C.   抗發炎、抗過敏 .抗病毒。

D.   抑制谷胱甘肽在肝臟內的缺失而導致之神經傷害。

E.   能通過腦血管障壁,保護腦細胞,防止老人癡呆症。

F.   促進微血管循環,保持血管暢通,增進血管彈性,防止動脈硬化,防止血栓形成,防止腦中風、高血壓及糖尿病之併發症。

 

麵包酵母菌中分離純化谷胱甘肽glutathione

Separation and purification of glutathione from Saccharomyces cerevisiae

 

Glutathione胱甘肽)是Hopkins1921年從酵母菌分離出來,是由Glutamic Acid, CysteineGlycine三個氨基酸所組成,存在於生體組織和血液中。

Glutathione(GSH)的生化效果為 

1. 抗氧化劑:細胞內最強的抗氧化劑。

2. 解毒劑:幫助肝臟解除藥物的代謝產物 。

3. 免疫系統增強劑:協助製造和維持T淋巴細胞功能時,以避免形成癌症。

4. 降低發炎反應:減少發炎的嚴重性、減少氣喘、關節炎、自體免疫疾病發作次數。 

5. 抗老化:谷胱甘肽和維他命E可抗老化作用。 

6. 抗巴金森氏症: 增加腦中黑質內谷胱甘肽濃度。 

進行研究項目

 

    天麻中天麻素與天麻多糖之提取及純化(吳茹茵)

 Studies on Extraction and Purification of Gastrodin and Polysaccharide from Gastrodia elata

含天麻素混合物 產率1.3 %(理論值0.5 %)

天麻(Gastrodia elata Blume)又名赤箭、其中所含天麻素(對羥甲基苯-β-D–砒喃葡萄糖苷)經現代藥理實驗證明天麻可用於治療頭暈目眩、肢體麻木、驚風、癲癇、高血壓、耳源性眩暈症,對於老人失智、抗焦慮、癲癇亦有顯著療效,增進天麻素提取效率與經濟效益的製程;利用水溶液對天麻粉末加熱提取,經吸附型管柱層析分離後,以霍氏轉換紅外線光譜儀(FT-IR)與高效能液相層析光譜儀(HPLC)進行比對分析,證實分離出的產物中含大量天麻素,現技術成就產率可達1.3%所有流程完全不需使用高等的儀器設備,且步驟簡單、快速,未來將以提高產物純度為目標

鈦金屬產業投資區域相關性分析-以高爾夫球頭為例(許美玲)

 

第一章        鈦基本知識與概述 

第二章        鈦資源狀況與鈦工業之發展

第三章        鈦產業鏈與群落關係-高爾夫球頭

第四章        鈦金屬-高爾夫球頭

第五章        鈦金屬價格與高爾夫球頭產業佈局及企業競爭發展               

第六章    結論

已完成之研究項目

 從麵包酵母菌中純化β-1.3-D-glucan(謝曉環,林忠平)

β-1.3-D-glucan 產率8% 純度超過80%

          β-1.3-D-glucan在醫療上可用來抗老化、抗輻射暴露(包括紫外輻射線)、抗腫瘤、抗發炎等使用,做為化妝品的添加物,如乳液、乳膏、抗紫外光乳液等,以β 1.3-D-glucan刺激皮膚細胞,分解皮膚表面的纖維蛋白,也可以治療由太陽曝曬過度的燒傷,增加美白效果,β 1.3-D-glucan添加入飲料中,如乳酸飲料、運動飲料等,可利用飲食方式達到增強身體免疫系統的目的。

   β-(1,3)/(1,6)-glucan是以β-(1,3)-糖苷為主鏈,β-(1,6)-糖苷為分支之碳水化合物,β-(1,3)/(1,6)-glucan被人體與動物吸收後能有效增強免疫活性。本研究從麵包酵母菌Saccharomyces cerevisiae分離出β-(1,3)/(1,6)-glucan之程序及與處理方法和其化學組成一起作描述,研究程序包括以下步驟:(a)以加熱與鹼萃取glucan來去除鹼溶性成分;(b)加熱與酸萃取細胞中的幾丁質(chitin)(c)用乙醇萃取來回收β-(1,3)/(1,6)-glucan;及(d)以不同乾燥方法來得到微米級之glucan

     將每一步驟之產物作FTIR光譜對照,以890 cm-1波數吸收峰來鑑定分離程序中產生之β-(1,3)/(1,6)-glucan,結果發現利用加熱的NaHCO3NaOH是有效地將蛋白質與鹼溶性甘露聚糖蛋白複合物(mannoprotein)從酵母菌中去除,幾丁質被水解於加熱的CH3COOH溶液中,在C2H5OH移除脂質(lipid)後,得到含有高純度的β-(1,3)/(1,6)-glucan。從FTIRNMR分析數據中發現,純化產物含純度很高之β-(1,3)/(1,6)-glucanSEMTEM顯示經冷凍乾燥、恆溫乾燥與溶劑乾燥之β-(1,3)/(1,6)-glucan產物是由薄片堆集而成的,測量其片狀厚度平均是小於100 nmTGA/DTA分析中得知乾燥產物含13%的水,加熱超過260℃後,β-(1,3)/(1,6)-glucan開始分解成CO2H2OX-rayTEM繞射圖研究β-(1,3)/(1,6)-glucan的結構為四方晶系,乙醚乾燥之晶格常數為a = b = 0. 878 ± 0.003 nmc = 0.872 ± 0.034 nm,冷凍乾燥之晶格常數為a = b = 0.866 ± 0.007 nmc = 0.844 ± 0.027 nm,因結構中有氫鍵存在,所以乾燥後的β-(1,3)/(1,6)-glucan會吸收90%的水份來使結構穩定。本程序是簡單、快速且容易的,可得高純度的β-(1,3)/(1,6)-glucan且產率高達11.3%,同時製程上的副產物甘露聚糖蛋白複合物可以回收。

β-(1,3)/(1,6)-glucans are the polymers of (1,3)-β-linked glucopyranos with the branch of (1,6)-β-linked glucopyranos. These glucans have been shown to have immunopharma- cological activity in humans and animals. This study present a process for isolation of β-(1,3)/(1,6)-glucans from baker’s yeast (Saccharomyces cerevisiae), together with compositions and methods of treatment. The process of the study comprises the steps of: (a) extracting alkali soluble components from cells with alkali and heat; (b) extracting the chitins from the cell wall with acid and heat; (c) extracting lipids with ethanol and recovered the β-(1,3)/(1,6)-glucan; and (d) using the different drying methods to give microparticulate glucan. The comparison of FTIR for the products of every step in process, the significant spectral 891 cm-1 is attributed to a β-(1,3)/(1,6)-glucan which is identified the product from the fractionation procedure. Hot sodium bicarbonate and sodium hydroxide can be very efficient to remove proteins and alkali-soluble mannoprotein from yeast. The chitin dissolves in hot acetic acid. After ethanol extraction and removal of the lipids, the insoluble residue contained pure β-(1,3)/(1,6)-glucan. From the FTIR and NMR analytical data, the purified β-(1,3)/(1,6)-glucan is found to have exclusively high purity. The electron microscopy SEM and TEM show that the three different drying β-(1,3)/(1,6)-glucan products have platelet particle aggregates which form a large particle size. The average thickness of platelets is measured to be less than 100nm. The drying products contain 13% water from the TGA/DTA measurements. After heating to above 260, the β-(1,3)/(1,6)-glucan decomposed to CO2 and H2O. Structural studies of β-(1,3)/(1,6)-glucan from diffraction patterns recorded by X-ray and TEM have revealed that these spacings are roughly in agreement with a tetragonal unit cell of dimensions a = 0.878 nm c = 0.872 nm for ether drying products, a = 0.866 nm c = 0.844 nm for lyophilization drying products, respectively. The process is simplefast and ease. The resulting glucan is obtained in high yields to about 10.5 % with high purity. The mannoprotein is also obtained as a byproduct.

 

葡萄籽中萃取純化高純度低聚原花青素 (OPC) 程序(游鎮博)

Process for extraction and purification of oligomers proanthocyanidins with high purity from grape seeds

高純度花青素 產率為0.7%(理論值0.8~ 1.2 %)

葡萄籽中多酚類(Phenolics)成份含量約4-8%,多酚成份中包含酚酸及單寧,而原花青素(Proanthocyanidins)為單寧成份中之縮合單寧,主要是單體及不同聚合度的單體所組合而成 ,原花青素擁有強抗氧化作用,其抗氧化消除自由基能力是維他命CE的數十倍,目前已廣泛應用於食品、飲料、化妝品及保健品等領域 。本研究先以沸水去除籽外包覆的蠟質及可溶性多糖,再將葡萄籽以酸提取法進行萃取,過程中控溫在90-100萃取3次,調整pH4將蛋白質及易凝聚型的高聚體去除,利用液液分離將初萃液表面油脂去除,配合吸附型樹脂進行分離有機酸與高聚合體及果膠,最後係利用樹脂進行再純化,所得產率為1.2%。將所得產物使用FTIRHPLC儀器檢測原花青素之純度,並與原花青素藥品進行純度的鑑定,鑑定結果顯示純度已超過原花青素藥品及國內外文獻之純度,且製備過程簡單且快速,過程中並未使用有毒溶劑,未來應用毋需擔憂。

The oligomeric proanthocyanidins (OPC) exhibit the free radical scavenging and antioxidant activity. It has been widely applied to food, drinks, cosmetics and other healthy products. This study demonstrated that the proanthocyanidins is extracted from grape seeds by a boiling citric solution. The extracts are passed through a column HP-2MG. The oligomeric proanthocyanidins (OPC) is obtained. The yield reaches 0.7%. FTIR and HPLC examinations showed that the OPC purity is very high. This process is simple and is proceeded by the non-toxic solvent.

  

綠茶葉中高純度EGCG 及咖啡因之新分離程序(薛盛仁)

A new isolation process for epigallocatechin gallate and caffeine of high purity from green tea

高純度茶多酚 產率9%(理論值8~ 12 %)

高純度EGCG 產率5 %

茶葉所含之兒茶素可以有效抑制癌細胞,並且可預防慢性病產生以及良好的抗氧化物質,兒茶素類中,以EGCG(epigallocatechin gallate)抗氧化能力最強,也可以去除多餘油脂達到減肥效果;茶葉中所含有的咖啡因,由於食用過多會使人失眠、神經質及心悸等負面影響,故必須去除茶葉中所含之咖啡因。本製程採用碳酸鈣甲醇水溶液將咖啡因、葉綠素、果膠等雜質先行去除,接這利用填充HP-2MG樹脂層析管柱進行EGCG之純化程序,將含有咖啡因及其它雜質的碳酸鈣水溶液收集,並將液體進行過濾步驟,利用填充HP-20樹脂之層析管柱進行咖啡因之純化作為本製程之副產品,本製程之產品以FTIR光譜進行產品之初步判斷,再利用HPLC確認物質及純度鑑定。

Catechins within the tea have anticancer and antioxidant functions. EGCG (epigallocatechin gallate) is the strongest antioxidant element inside catechins. We firstly used the CaCO3 solution to remove caffeine, pectin and impurities from green tea during the extract process of polyphenols. Then, the polyphenols were extracted from the green tea by hot water. The yield of polyphenols is about 9%. Next, the tea polyphenols is applied to the HP-2MG adsorption colum. EGCG can be eluted from the adsorption colum by means of 30% of methyl alcohol and pH4 solution under temperature of 60. And the yield of EGCG is around 6%. The relative purity of EGCG is nearly 90.5% according to the examination of FTIR and HPLC. The CaCO3 solution, which consisted of caffeine and other impurities, is applied to the adsorption colum HP-20. The caffeine was eluted by the 95% methyl alcohol solution. The high-purity caffeine can be obtained and the yields are about 1.8%.

大豆中分離高純度Genistin之程序(洪筱鈞)

The isolation process for Genistin of high purity from soybeans

大豆異黃酮混合物(GDGly) 產率0.26 % (理論值0.2~ 0.4 %)

高純度Genistin 產率0.08%

大豆異黃酮普遍存在於豆科植物中,屬於黃酮類之ㄧ次代謝產物。以全豆而言,大豆異黃酮含量約佔0.2~0.4%,分別以1~3%的去醣型、97~ 99 %之配醣型式存在。研究顯示大豆異黃酮具有獨特的生理活性,對於人體降低癌症發生率、抗氧化功能有相當的效果,而備受矚目。實驗中建立了一套簡便又快速的方法,使用溶劑萃取並配合大孔吸附型樹脂製得產率高達0.26%之大豆異黃酮,更分離出高純度之genistin由萃取乃至成分分離完全不需使用昂貴的儀器設備,完全符合本研究室 步驟簡單、快速且設備低成本之宗旨。

Soy isoflavones are often reported on the prevention of cancer, women menopausal symptoms and alcoholism, and have broad application in the pharmaceutics, foodstuff and cosmetics. This research purports to develop a simple, fast and effective extraction and separation procedure. The methanol of 60 per cent was used to extract the whole soy beans. The extract was formed the soy molasses after being concentrated and absorbed by the HP-2MG column. The yield after being desorbed by the methanol of 60 per cent was 0.26 per cent of isoflavone aglycones and isoflavone glycosides. Then the products was passed through the HP-2MG column to carry on the separation procedure. The desorption was made by sodium hydroxide of 0.01N. The 0.04% yield was obtained. The FT-IR, UV-Vis and HPLC analysis identified it as a high-grade component of genistin. Subsequently using 60 percent methanol to pass through the same column to complete desorption. The mixture of isoflavone glycosides was finally obtained. The yield was 0.11%. The mixture is composed of genistin, daidzin and glycitin.  

論文與海報發表實錄

1.謝曉環*,黃銘賢.(2003).由酵母菌提純葡聚醣Glucan及其納米粉末之製備.中國化學年會,AC-PB-100, p.AC-025.

2.謝曉環,(2004),由麵包酵母菌(Saccharomyces cerevisiae)純化β-(1,3)/(1,6)-glucan之研究,國立高雄應用科技大學92學年度化學工程系碩士論文,全國博碩士資訊網系統編號:092KUAS0063001

3.游鎮博*,吳茹茵,黃銘賢.(2006).以鹼酒精和酸酒精法提取葡萄籽中花青素.53屆化學工程研討會,3-P21, p.51.

4.薛盛仁*,吳茹茵,黃銘賢.(2006).綠茶葉中萃取分離高純度兒茶素及咖啡因.53屆化學工程研討會,3-P26, p.53.

5.吳茹茵*,游鎮博,薛盛仁,黃銘賢.(2006).從巴西磨菇中分離純化可溶及不可溶多醣.53屆化學工程研討會, 3-P27, p.54.

6.林忠平,(2006),麵包酵母菌中β-葡聚醣及固醇類的分離及特性研究,國立高雄應用科技大學94學年度化學工程系碩士論文,全國博碩士資訊網系統編號:094KUAS0063014

7.洪筱鈞*,黃銘賢.(2007).以溶劑法提取並分離大豆異黃酮之研究.54屆化學工程研討會,TS022, p.55.

8.吳茹茵*, 黃銘賢.(2007).從天麻中萃取天麻素.海峽兩岸「先進材料與化學製造技術」研討會.

 

2007年生技醫療產業論壇暨南區技專校院生物科技研發成     

 

研究團隊